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0. Introduction: a systemic approach0. Introduction: a systemic approach

When studying earthquakes we take advantage of a new way to 
see Earth System:

Geosystemics (De Santis, 2009) studies Earth system from a 
holistic point of view  (a trans-disciplinary approach): it focuses 
on relations among parts of the system (in terms of Entropy, 
Information production and transfer).  In this framework, we 
expect that solid Earth during an earthquake exchanges (both 
seismic and magnetic) information among most of the parts 
involved in the process. We will show here physical patterns 
of the data and propose a scheme of integrated 
forecasting/prediction.
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1. The physics behind this work1. The physics behind this work
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Approaching the main shock, a seismic sequence 
shows a power-law acceleration of the crustal 
seismic strain release depending on the time tf
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Accelerated Strain Release (ASR)

m≈0.3

(Varnes, 1989; Bufe & Varnes, 1993)

We can remove singularity considering  the cumulative Benioff strain: 

Critical points: inversion instability (it is better to 
impose some parameter, e.g. m); ASR provides a 
prediction of A,B,m, tf even with no main shock; 

Bias in retrospective analyses

For brittle materials close 
to rupture (Voight, 1989):
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Spatial epicenters distribution

2. A case study: L’Aquila Mw=6.3 
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3.1 Shannon Entropy of Earthquakes3.1 Shannon Entropy of Earthquakes
If we consider the earthquakes in a given region where the 
Gutenberg-Richter (GR) law is valid, we have a relationship with 
b-value 
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De Santis et al., submitted to BSSA

k=0.072

b= 0.6-1.2 with
physical significance

The case of L’Aquila: 3 entropy 
regimes and Main Shock belong 

to the main regime 
starting 1.5 hours before it

The case of L’Aquila: 3 entropy 
regimes and Main Shock belong 

to the main regime 
starting 1.5 hours before it

3. Seismic data analyses3. Seismic data analyses



2009 L’Aquila seismic sequence as a chaotic process

But,  Is there any  magnetic effect involved in the process?

De Santis et al., submitted to Tectonophysics
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4.1 Transfer Function Entropy4.1 Transfer Function Entropy

From the background entropy a few frequency contributions 
emerge at 25-33 mHz (skin depth ≈20 km): do they correspond 
to the depths activated initially by the seismic sequence? (see 

Cianchini et al., poster!)
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4.2 Accelerated magnetic Strain Release 
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We apply AMSR to ten couples of geomagnetic observatory
time series, finding the same power-law pattern
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Accelerated magnetic Strain ReleaseAccelerated magnetic Strain Release
We find acceleration even in two other geomagnetic 

observatories as indication of a very large spatial extent of the 
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Accelerated magnetic Strain ReleaseAccelerated magnetic Strain Release

External factors  do not contribute to AMSRExternal factors  do not contribute to AMSR
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5. Conclusions5. Conclusions

An integrated seismic/magnetic technique based on the Entropy and on ASR+ Chaos 
has been applied to seismic and magnetic data of L’Aquila with following results:

1.L’Aquila seismic sequence evolved as a  chaotic point process:
ASR+chaos can be a powerful combined strategy to forecast the main shock

2. An analogous magnetic technique (AMSR) has been introduced that shows 
similar temporal results although no spatial indication is provided

3. Combination of both methods together with Entropy considerations should provide 
the best results

4. Warning! We learnt a lot from a retrospective modelling, but what would happen with
Forward modelling (real forecasting)?

Further analyses are needed on more seismic sequences both in retrospective and 
(more important!) in forward (real) forecasting/predictions!
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